Approximate Kernel Selection with Strong Approximate Consistency

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Approximate Kernel Regression with Variable Selection

Nonlinear kernel regression models are often used in statistics and machine learning due to greater accuracy than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an analog of the eff...

متن کامل

Approximate Structural Consistency

We consider documents as words and trees on some alphabet Σ and study how to compare them with some regular schemas on an alphabet Σ′. Given an input document I , we decide if it may be transformed into a document J which is ε-close to some target schema T : we show that this approximate decision problem can be efficiently solved. In the simple case where the transformation is the identity, we ...

متن کامل

Approximate kernel competitive learning

Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate ke...

متن کامل

On Column Selection in Approximate Kernel Canonical Correlation Analysis

We study the problem of column selection in large-scale kernel canonical correlation analysis (KCCA) using the Nyström approximation, where one approximates two positive semi-definite kernel matrices using “landmark” points from the training set. When building low-rank kernel approximations in KCCA, previous work mostly samples the landmarks uniformly at random from the training set. We propose...

متن کامل

Scalable Kernel Clustering: Approximate Kernel k-means

Kernel-based clustering algorithms have the ability to capture the non-linear structure in real world data. Among various kernel-based clustering algorithms, kernel k -means has gained popularity due to its simple iterative nature and ease of implementation. However, its run-time complexity and memory footprint increase quadratically in terms of the size of the data set, and hence, large data s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33013462